

The 10th International Mycological Congress, Bangkok, Thailand 3rd – 8th August 2014 **Theme**: Environment, Ecology and Interactions; **Session**: Litter decomposition and carbon cycling

Wood-inhabiting macrofungi: substrate preferences and indicator species in West Hungary

Abstract ID.: ABS0856

Irén <u>SILLER¹*, Bálint DIMA², Katalin TAKÁCS², Zsolt MERÉNYI³, Torda VARGA³, Gábor TURCSÁNYI², Péter ÓDOR⁴, Gergely KUTSZEGI⁴</u>

¹Department of Botany, Institute of Biology, Szent István University, Budapest, Hungary, Turcsanyine.Siller.Iren@aotk.szie.hu ²Department of Nature Conservation and Landscape Ecology, Szent István University, Gödöllő, Hungary ³Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, Hungary ⁴MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary

Wood-inhabiting fungi and tree hosts: which ones are associated?

Introduction

This study has been carried out in Őrség National Park, West Hungary, Central Europe. We aimed to explore the substrate preferences of the most frequent wood-inhabiting macrofungi

Materials and methods

• Thirty-five, 70–100 years old, managed forest stands, 30 m × 30 m plots, 3 field surveys: in August and May 2009, and during autumn 2010;

in managed forest stands with special attention to the species identity of their host trees.

Results

- We found 216 wood-inhabiting species and fixed 2,441 records in total. A large number of recorded species (177) had low frequency for Chi-square tests, that is represented by less than 14 specimens. We found 39 fungi species (1,758 records) for carrying out Chisquare tests (Table 1).
- We applied 99 wood-inhabiting species (2,246 records, with more than 4 fixed specimens) for practicing indicator species analysis. The 9 significant ($\alpha = 0.05$) connections among certain host trees and fungi species are detailed in Table 2.

Table 2. Results of indicator species analysis

Species	Cluster	Indicator value		
Phellinus viticola	Ps	0.5263**		
Daedaleopsis confragosa	Prunus avium	0.2944***		
Stereum sanguinolentum	Pa	0.2203**		
Skeletocutis nivea	Fs/Cb	0.2053**		
Schizopora flavipora	Qp/Qr	0.2053**		
Schizopora paradoxa s.l.	Qp/Qr	0.1715*		
Lentinellus ursinus	Populus tremula	0.1568**		
Piptoporus betulinus	Betula pendula	0.1131**		
Fuscoporia contigua	Qp/Qr	0.0633*		
*: p < 0.05, **: p < 0.01, ***: p < 0.001				

 Species identity of host trees and wood-inhabiting fungi were registered;

- Contingency tables (using the number of fixed specimens and the following 4 host tree categories: Fs, Ps/Pa, Cb, Qp/Qr, see Table 1 for abbreviations); application of Chi-square tests to characterize the connection between observed and expected values of fixed specimens;
- Indicator Species Analysis (Dufrene & Legendre 1997) to find significant connections among certain fungi species and host trees.

Species	p-value	Connection between expected and observed values	Preference type G: generalist, S: specialist	Putative host preferences (based on the contingency table of observed specimens)	Ecological guilds (Boddy 1999, Boddy & Heilmann-Clausen 2008)	Number of specimens
Calocera furcata	0.5577	D	G	deciduous trees	unknown/different	18
Trametes versicolor	0.1604	D	G	deciduous trees	combative invader	28
Steccherinum ochraceum	0.1279	D	G	deciduous trees	combative invader	68
Auricularia auricula-judae	0.0626	D	G	deciduous trees	early ruderal	19
Exidia glandulosa	0.0450	D	G	deciduous trees (most preferred: <i>Qp /Qr</i>)	early ruderal	15
Diatrype stigma	0.0171	D	G	deciduous trees (most preferred: <i>F</i> s)	unknown/different	16
Hypholoma fasciculare	0.0155	D	G	no significant preference of angiosperms or gymnosperms	cord-forming	18

Table 1. Results of Chi-square tests

• According to our contingency tables and Chi-square tests (Table 1), we found 7 wood-inhabiting fungi species (highlighted as host generalists) with significantly ($\alpha = 0.01$) "dependent" relationships between their observed and expected number of specimens. These species were called as "host generalists" (regarding groups of tree taxa, see Column 5), because they preferred our 4 studied groups of host trees by significantly the same proportions as it was expected based on the tree species proportions of all registered specimens. In accordance with these, we defined 32 "host specialist" wood-inhabiting fungi species (in most cases, they were specialists of deciduous trees). • As can be seen in Column 6 of Table 1, the majority of

Steccherinum fimbriatum	0.0100
Cyathus striatus	0.0055
Panellus stipticus	0.0026
Postia subcaesia	0.0025
Schizophyllum commune	0.0023
Exidia nigricans	0.0015
Biscogniauxia nummularia	0.0014
Xylaria hypoxylon	0.0007
Laxitextum bicolor	0.0005
Fuscoporia contigua	0.0004
Stereum ochraceoflavum	0.0004
Antrodia malicola	0.0002
Trametes hirsuta	0.0002
Hypocrea citrina	4.35E-05
Schizopora paradoxa is.l.	1.89E-05
Mycena polygramma	1.11E-05
Polyporus varius	7.08E-06
Galerina marginata	6.4E-06
Aleurodiscus disciformis	2 31F-06
Antrodiella fraarans	2.010 00 4.69F-07
Hynavylan fraalfarme	-7.00E 07 2.1F.∩2
Chalataoutia nivea	0,IL-00 1 16E 00
Skeletocutis niveu	I,ICE-UX

deciduous trees (most preferred: <i>F</i> s)	cord-forming
deciduous trees (most preferred: <i>F</i> s)	cord-forming
deciduous trees (most preferred: <i>Qp</i> / <i>Qr</i>)	early ruderal
deciduous trees (most preferred: <i>F</i> s)	late stage specialis
deciduous trees (most preferred: <i>F</i> s)	early ruderal
deciduous trees (most preferred: <i>F</i> s)	early ruderal
deciduous trees (most preferred: <i>F</i> s)	unknown/differen
deciduous trees (most preferred: <i>F</i> s)	unknown/differen
deciduous trees (most preferred: <i>F</i> s)	combative invader
deciduous trees (most preferred: <i>Qp /Qr</i>)	unknown/differen
deciduous trees (most preferred: <i>Qp /Qr</i>)	combative invader
preferring <i>F</i> s only	unknown/differen
deciduous trees (most preferred: <i>F</i> s)	early ruderal
deciduous trees (most preferred: <i>F</i> s)	unknown/differen
deciduous trees (most preferred: <i>Qp /Qr</i>)	early ruderal
preferring Qp /Qr only	late stage specialis
deciduous trees (most preferred: <i>F</i> s)	combative invader
most preferred: Qp/Qr and Ps/Pa , no significant	late stage specialis
preference of angiosperms or gymnosperms	
preferring <i>Qp /Qr</i> only	unknown/differen
deciduous trees (most preferred: <i>F</i> s)	unknown/differen
deciduous trees (most preferred: <i>F</i> s)	early ruderal
deciduous trees (most preferred: <i>F</i> s)	unknown/differen

tested fungi species belong to the ecological guild called "early ruderals" or "compative invaders" according to Boddy (1999) and Boddy & Heilmann-Clausen (2008). Connectedly, 4 fungi species out of the 39 tested ones are defined as "late stage specialist" only.

• In Appendix 1, we suggest some fungi species (with too low frequencies to be analyzed) from Őrség National Park.

Conclusions

Our results corroborate with the general opinion: managed forests provide suitable habitats mainly for "generalist" wood-inhabiting fungi species in Örség National Park; moreover, managed forests harbour less late stage specialist fungi (present with considerable frequencies) compared to their natural references.

Schizopora flavipora	9.22E-09		S	deciduous trees (most preferred: <i>Qp /Qr</i>)	unknown/different	91
Crepidotus cesatii	4.38E-09	I	S	deciduous trees (preferring Fs and Cb only)	unknown/different	14
Stereum subtomentosum	6.18E-11	1	S	deciduous trees (most preferred: <i>Qp</i> / <i>Qr</i>)	combative invader	53
Stereum hirsutum	3.17E-11	1	S	deciduous trees	combative invader	430
Crepidotus variabilis	6.95E-13	1	S	deciduous trees (most preferred: <i>F</i> s and <i>Cb</i>)	unknown/different	40
Byssomerulius corium	2.94E-14		S	deciduous trees (most preferred: <i>Cb</i>)	early ruderal	14
Postia stiptica	3.16E-16		S	coniferous trees (most preferred: <i>Ps /Pa</i>)	late stage specialist	14
Hymenochaete rubiginosa	2.2E-16	I	S	deciduous trees (most preferred: <i>Qp /Qr</i>)	combative invader	98
Stereum sanguinolentum	2.2E-16		S	coniferous trees (preferring <i>Ps/Pa</i> only)	combative invader	30
Heterobasidion annosum s.l.	2.2E-16		S	coniferous trees (preferring <i>Ps/Pa</i> only)	root pathogen	25

Cb: Carpinus betulus, **Fs**: Fagus sylvatica, **Pa**: Picea abies, **Pi**: Pinus sylvestris, **Qp**: Quercus petraea, **Qr**: Quercus robur

D = dependent, **I** = independent

References

Boddy, L. (1999): Saprotrophic cord-forming fungi... – Mycologia **91**: 13–32.

Boddy, L., Heilmann-Clausen, J. (2008): Basidiomycete community... in: Boddy, L. et al. (eds) Ecology of Saprotrophic Basidiomycetes pp. 211–237.

Dufrene, M., Legendre, P. (1997): Species assemblages and indicator species... – Ecol. Monog. 67: 345-366.

100

This study was carried out in the frame of Őrs-Erdő Project (http://orserdo.okologia.mta.hu/), and supported by the Hungarian Scientific Research Fund (OTKA, K79158) and the Őrség National Park.

Appendix 1. Suggested indicators of habitat quality from Őrség National Park: wood-inhabiting fungi with too low frequency values to be analyzed in our present study were linked to the European indicator species lists: Ainsworth (2004), Christensen et al. (2004), Nitare (2000).

Serial no. of species in Ainsworth (2004)	Species name	Serial no. of species included in the European list of 21 indicators (Christensen et al. 2004)	Included in Signalarter (Nitare 2000)	Őrség National Park, West Hungary
	A	SCOMYCETES		
1	Camarops polysperma			
2	Camarops tubulina	1		
3	Eutypa spinosa			

GILLED FUNGI

4	Flammulaster muricatus	2		
5	Flammulaster limulatus s.l.	3		×
6	Hohenbuehelia auriscalpium	4		
7	Hohenbuehelia mastrucata			
8	Lentinellus ursinus	5		×
9	Lentinellus vulpinus	6		
10	Ossicaulis lignatilis	7	×	
11	Pholiota squarrosoides	8		
12	Phyllotopsis nidulans			
13	Pluteus umbrosus	9	×	
14	Volvariella bombycina			
	POROID FL	JNGI		
15	Aurantiporus alborubescens	10		
16	Aurantiporus fissilis			×
17	Ceriporiopsis gilvescens	11		×
18	Gelatoporia pannocincta	12		×
19	Coriolopsis gallica			
20	Ganoderma cupreolaccatum	13		
21	Inonotus cuticularis	14		
22	Mensularia nodosa			
23	Ischnoderma resinosum	15		×
24	Oxyporus latemarginatus			×
25	Phellinus cavicola			
26	Spongipellis delectans	16		
27	Spongipellis pachyodon			
	OTHERS	S		
28	Climacodon septentrionalis	17		
29	Dentipellis fragilis	18	×	×
30	Hericium cirrhatum			
31	Hericium coralloides	19	×	
32	Hericium erinaceum	20		
33	Hypochnicium analogum			
34	Mycoacia nothofagi	21		
35	Phleogena faginea			
36	Scytinostroma portentosum			

References

Ainsworth, M. (2004): Developing tools for assessing fungal interest in habitats. 1: beech woodland saprotrophs. English Nature, Report Number **597**. Christensen, M., Heilmann-Clausen, J., Walleyn, R., Adamcik, S. (2004): Wood-inhabiting fungi as indicators of nature value in European beech forests. In: Marchetti, M. (ed): Monitoring and indicators of forest biodiversity in Europe – From ideas to operationality. EFI Proceedings **51**: 229–237. Nitare, J. (ed) (2000): Indicator species for assessing the nature conservation value of woodland sites: a flora of selected cryptogams. The Swedish National Board of Forestry, Jönköping, Sweden.